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Scale-covariant field theories: 111. The augmented scalar 
theory 

J M Ebbutt and R J Rivers 
Blackett Laboratory, Imperial College, Prince Consort Road. London SW7 2BZ, England 

Received 22 February 1982 

Abstract. We examine the augmented formalism for a scalar pseudo-free field theory. 
Motivated by a diagrammatic expansion for mass renormalisation we justify a constraint 
equation for the theory that gives additional information over the subtracted scale-invariant 
formalism. 

1. Introduction 

As has become apparent from our previous papers (Ebbutt and Rivers 1982a, b, 
to be referred to as I and 11, respectively), in general we do not know how to solve 
analytically for scale-covariant field theories (Klauder 1978, 1979). In such a situation 
we try to get some insight by examining particular (and less intractable) examples. 
The case that we shall consider here is that of a scalar theory with scale-invariant 
measure. 

In I and I1 we suggested that the augmented translation-covariant reformulation 
(Klauder 1977) of such a theory gives rise to the least degenerate branching equations 
between Green functions. This was based on formal manipulations of path integrals, 
a notoriously unreliable practice. 

In this paper we shall examine the augmented formalism more carefully. Our initial 
aim is to show in more detail how the naive augmented theory equations are indeed 
correct. 

It is sufficient for this purpose to work with the pseudo-free theory of a single 
scalar field cp. The generating functional for the Minkowski theory is (Klauder 1977)t 

where 9[cp], 9[x] are translationally invariant measures normalised so that 26 [O] = 1. 
On integrating over the auxiliary field ,y we recover the original expression for 

the pseudo-free theory (Klauder 1979) 

in terms of the scale-invariant measure 9’[cp]. 

i In 11, where we were primarily interested in combinatorics we used the Euclidean theory. Here we use 
the Minkowski theory. 
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However, the formalism (1.1) permits an alternative description obtained by 
performing the cp integration first. This gives 

i 
%oL~,h ]=-5  J dx d y h ( x ) g ( x , y ; ~ ) h ( ~ ) + ~ T r I n ( [ ? + m ~ + r l ~ ~ )  (1.4) 

(0, + mg + w 2 ( x ) ) g ( x ,  Y ;  x) = -is(x - Y ). (1.5) 
with 

The advantage of (1.3) over (1.2) is that it lends itself to a diagrammatic expansion, 
which is the content of the next section. This enables us, in 98 3 and 4, to establish 
a relationship between normal-ordering and the subtraction procedure (Klauder 1979) 
in the scale-covariant formalism that caused us such concern in 11. In the process of 
doing so, we get some understanding of the way mass renormalisation arises in the 
theory. This is important, since our understanding of renormalisation in scale-covariant 
theories is very poor. 

To provide additional support to this analysis, we use § 5 to re-examine the 
augmented branching equations for solutions compatible with the above. 

In 0 6 we repeat part of the analysis for the large-N limit of the O ( N )  pseudo-free 
theory. 

Our conclusions are presented in the final section. 

2. Diagrammatic description of the pseudo-free theory 

Given that the translation-covariant augmented formalism of (1.1) is of a nature to 
permit diagrammatic expansions, what do we expect? 

Klauder (1979) has suggested that a scale-invariant measure is somehow equivalent 
to introducing a partial ‘hard-core’ interaction into the theory. Thus the pseudo-free 
theory will give rise to scattering (and will have non-trivial connected Green functions 
Wzn for arbitrarily large n). Moreover, if the consequences of changing measure in 
quantum mechanics are any guide, the ‘hard-core’ interaction will be effectively 
expressed as a non-polynomial interaction+ (Kay 198 1). 

It may be argued that this is an unfortunate way to look at a scale-invariant theory, 
since describing the hard-core effect of the measure as a non-polynomial interaction 
is, in effect, to attempt an expansion about the free scalar theory. This seems to run 
counter to the spirit of scale-covariant theories, even though our understanding is so 
incomplete that we are reluctant to foreclose any avenue of approach at this state. 

Despite this unease, we proceed. Introducing a source j ( x )  coupled to x(x)  in 
(1.1) enables us to define the generating functional 

t This follows from approximating finite step potentials by large order polynomials in Kay (1981). 
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in terms of Eo of (1.4). The generating functional Zb [h] of (1.1) is obviously given 
by Zb [h] = 26 [h, j = 01. 

Let Go(x - y )  be the free-field Green function satisfying 

( O , + m ~ ) G o ( x - y ) = - i s ( x - y ) .  

We then separate out the free-field functional 

Zo[h] = exp i Wo[h] 

with 

i 
W0[h1= 2 dx dy h (x)Go(x - Y :h (Y  1 

~ ~ [ h , j l = ~ ~ [ h ]  J ~ h ] e x p ( i a h ;  h ]+ i  I )  jx 

to get 

where 

ah, dx dyh(x)Go(x-y)h(y).  

From (1.4) we see that ah, h] can be expressed as 

ah, h l=  -;qGo(O) J dx,yZ(x)-iq J dx,y2(x)@2(x) 

2 +f f q"J  d x ~  dxz . ,  . dx,V(2")(x1.. . x,; h)x2(x1). . . ,y (x,). 
n = 2  

In equation (2.8) 

@(XI = i dy Gob - Y ) ~ ( Y )  

and 

v'2"'(x1 . . . x,) = Vi'"' ( X l  . . . x,) + ViZ") (x1 . . . x,; h )  

where 

is h independent, and 

Vi'") (XI . . . x,) = - (-i)n-l@(xdGo(xl -x2) . . . Go(x,-1 -x,)@(x,) 

is h dependent through @(x). In figure 1 Vi'"' and Vi'") are represented diagramati- 
cally by a closed Q n-polygon and (n + 1)-link chain terminated by h respectively. 

What really interests us is the generating functional WA [h] for connected pseudo- 
free Green functions obtained from 

i Wb [h, j] = In Zb [h, j] (2.13) 

on setting j = 0. From its definition, we see that 

Wb [h] = WO[h] + Z[h] (2.14) 
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X" x .  

Figure 1. The non-local interaction vertices Vb'"' and V:'"' of the effective action %[x; h ]  
of equation (2.8). 

where X [ h ]  is the sum of all connected vacuum-to-vacuum diagrams constructed from 
a ,y theory with action %k ; h ]  of equation (2.8). That is, from a theory with propagator 

(2.15) 

h-dependent mass insertion (2-point function) 

M2(X = q 0 2 ( x )  (2.16) 

and (partially) h-dependent non-local 2n-point vertices -$q" V(In' (as given by 
figure 1). 

For reasons that will become clearer later, the most relevant renormalisation to 
consider is that of the parameter mi. To see this it is sufficient to consider the two-point 
function 

The first term in (2.17) is the free-field solution. If we examine the second term 
we see that only the two following types of diagram can contribute. 

(i) Diagrams with no M 2  insertions. In this case all except one of the vertices V'2n' 
are replaced by Vi'"'. The remaining vertex is replaced by Vi'") which is then 
differentiated twice to remove its h. This is done in all possible ways. 

(ii) Diagrams with one M 2  insertion which is doubly differentiated. All vertices 
V'2"' are then replaced by Vb'"'. 

Table 1 displays these diagrams at one-loop, two-loop, and three-loop levels. For 
convenience we take 

qGo(O) = 1 (2.18) 

in these diagrams to simplify calculations. With this choice, the propagator A0 is a S 
function with coefficient unity, and V"") has the coupling strength Go-" (0) associated 
with it (and M 2  the coefficient GG' (0)). 

Individual entries in table 1 are interpreted as follows. The second column displays 
a particular connected vacuum-to-vacuum diagram constructed from the above propa- 
gator and vertices. In the third column are displayed those contributions to G(x - y )  
obtained from this vacuum diagram. The broken lines represent the S function A, 
the full lines the Go. On contracting the A we obtain the diagrams in the fourth 
column. To determine the nature of the singularities associated with each diagram 
we note that each closed broken loop in the uncontracted diagrams gives one factor 
of S(O), and each vertex gives a factor of G,' (0). We then have to multiply these 
singularities by the singularities (Go(0), B, etc) associated with the contracted diagram. 
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G ,  
the 

For example, in figure 3(c) of the table we have one 6(0) and four factors of 
(0) from the uncontracted diagram. Since the contracted diagram contains G:(O) 

resultant singularity is 8(0)/Go(O). The notation is that 

- 1  

n-1  

L, = n dx, GO(X -xl)Go(xl - x d .  . . GO(X, -~  -.VI (2.19) 
r = l  

is an n-link loop fixed at x. Other symbols (D, E, etc) have a meaning that can be 
read off from the corresponding diagram in the fourth column. 

The last column contains the nature of the formal singularity associated with the 
diagram. On examination, we see that each singularity occurs at (infinitely) many-loop 
levels. For example, S(0)/Go(O) will arise from the n-petal ‘flower’ (interpreting 
diagrams 2(c), 3(c), 3(f), 3(s) as one-, two-, three- and four-petal ‘flowers’) for 
arbitrary n. This indicates the effective non-polynomial nature of the ‘hard-core’ 
scale-invariant measure. However, because of our inability to calculate the coefficient 
of this singularity at each loop level (for which it will occur several times) it is sufficient 
for the moment just to catalogue its presence. 

In order to understand how to handle such formally meaningless singularities we 
examine other circumstances in which a similar problem arises. 

The best understood is the 1,” expansion of O(N)-invariant linear and nonlinear 
U models of scalar fields (belonging to the vector representation). For these models 
the leading term in the 1 / N  expansion is the sum of all ‘cactus’ diagrams (Schnitzer 
1974) i.e. diagrams constructed entirely from Go(0) and L,  ‘petals’. The formal 
similarity extends even to the fact that the coupling strength ho (analogous to q above) 
associated with these ‘petals’ is formally expressible as the inverse of singular distribu- 
tions. 

If this 1/N expansion has taught us anything, it is that the essential physics implied 
by it (e.g. dynamical changes of symmetry) arises from these most singular diagrams. 
Any attempt to eliminate them by normal ordering would be disastrous?. Similar 
arguments can be made for mean-field diagrammatic expansions (Bender et aE 1977). 
However, as a consolation we have learnt to expect these singularities, which get 
progressively worse in loop expansions, to sum to something simpler. 

Yet further support comes from orthodox non-polynomial field theories, where 
we find (Salam 1971) that attempts to normal-order potentially give rise to incon- 
sistencies. 

Bearing this in mind we conclude this discussion of W2 by singling out those most 
singular diagrams which make contributions only to point-mass insertions. If m2 is 
the total mass given by such insertions, it is formally expressible in terrns of m i  as 

(2.20) 

There will also be cross terms in L2L3 etc, present at a higher loop level. In (2.20) 
the coefficients a, bl ,  b 2 , .  . . , c l , .  . . , d l , .  . . are uncalculable and Go(0) depends for- 
mally on m;. 

+ This has been shown empirically for general 1/N expansions. In 5 6 we shall specificall) calculate the 
large-N limit of the O(N)-invariant scalar pseudo-free theory. 



Sclae-covariant field theories: III 2957 

As we might have expected, the series (2.20) can be formally summed, and we 
shall show how to do so later. What is important for the moment is that from 
the above discussion we believe that the series (2.20) is the one we have to consider. 

We conclude this section with the recognition that any complete description of 
the pseudo-free theory must go beyond the two-point function. In table 2 we have 
displayed some of the diagrams that contribute to the four-point connected Green 
function W4(xlxzx3x4). We shall have a few comments to make on this later. 

3. The pseudo-free branching equations 

After the full frontal diagrammatic assault on the generating functional Zb [h] of (1.1) 
we shall now be a little more subtle. We have at least learnt not to attempt any 
normal ordering. Our approach will be to attempt a solution based on the branching 
equations for Zb [h, i] of (2.1). 

Accepting (2.1) at its face value, from the translation invariance of 9[lp],  9[x] it 
follows that 

and 

(3.1) 

where K,  = U, + mi. 

interactions, whereas (3.1) is more dynamical. 

nected Green functions are defined by 

Equation (3.2) is a constraint equation, unaffected in form by the inclusion of 

The branching equations that follow from (3.1) are easily obtained. If the uncon- 

(26 [0, 01 = 1) the constraint equation (3.2) gives 

iS(x - y )  + qG2&x; x y )  = 0 (3.4a) 

i S ( x - y ) G , o ( x l . .  . X , ) + ~ G ~ + ~ , ~ ( X X X ~ . .  . x , ; x y ) = O  p a 2  (3.4b) 

and more generally 

i S(X -xr)Gp,q(xi . . x p ;  y i .  . . 9 r  - .  yq+i) 
q+1 

r = l  

+ qGp+2,q+2 (xxx1. x p ;  x y l .  . yq)  = 0 q 2 2 .  (3.4c) 

Since G2p+l,q, Gp,2q+1 decouple in all equations from G2p.2q we have set them to zero. 
Equations (3.4) have been displayed in I. We note that (3.46) can be written 

showing a high degree of factorisation (figure 2). 
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Figure 2. The exact factorisation equation (3.5). Full lines refer to the cp field, wavy lines 
to the ,y field. Circles denote unconnected Green functions and broken lines represent 
delta functions. 

(3 .6b )  
,.. 

i 1 a ( ~ - x r ) G m - ~ , q ( ~ ~ .  . . x * r .  x m ;  ~ 1 . .  . Y q ) + K x G m + l , q ( x x l  x m ;  Y I  1 * * Y q )  
r = l  

+ v G m + l . q + 2 ( X X 1 *  * * x m ;  x x y l .  * y q )  = 0 m , q a 2  ( 3 . 6 ~ )  

It is useful to compare these equations with the subtracted scale-covariant equations 
displayed in I. 

obtained from (1 .2 ) .  These are (Klauder 1977) 

with 

(3 .7 )  

(3 .8 )  

The subtraction procedure (3 .8 )  is motivated by the lattice formulation of the 
independent-value model (IVM), and was discussed in 11. 

We see that, to make a comparison, we replace equation (3 .1)  by the higher-order 
equation (obtained from (3.1) and (3 .2 ) )  

s a s s o =  h(x)- -  i ( X  ) - - - Kx - [ iSh(y)  i & ( y )  i S h ( y )  i S h ( x )  

- v ( S h ( x ) S h ( y ) 8 j ( x ) 2  s4 -Sh(x ) 'S j (x )&(  s4 y )  )]Zb =o.  (3 .9 )  

On setting x = y and j = 0 equation (3.9) becomes identical to (3.7) but for the 
absence of any subtraction. We note that, since G 2 , 1  = G 1 , 2  = 0 equations (3 .1)  and 
(3 .2)  are immune to subtraction. In order to restore parity between the augmented 
equations and (3 .7)  either ( 3 . 4 ~ )  or ( 3 . 6 ~ )  would have to be rejected?. As we have 

t In I1 we argued that (3.4a), at least, is sound. 
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no compelling reason to jettison either we shall examine the consequence of assuming 
(3.9) to be correct. That is, the augmented equations contain more information than 
the subtracted scale-covariant equations. 

For the remainder of this section we shall extract this additional information. 
Using the simplifying notation G, for G,,o we see, on subtracting ( 3 . 4 ~ )  from (3.6u), 
that 

(3.10) lim K,G2(x - y )  = 0.  
x - v  

This equation is the essential new feature of the augmented equations. To see 
what it means we assume that G2(x-y) has the spectral representation (bk=  
d" k/ (2 .n )" ) 

(3.11) 

= J d a  G ~ ( x  - y ;  a )p (a ) .  (3.12) 

Equation (3.10) can then be formally expressed as 

m: = +i2-S(0)/iG2(0) 
where 

(3.13) 

G2(0)rTt2 = J daap(a)Go(O; a). (3.14) 

How should we interpret (3.13)? Firstly, there is a sense in which it is a statement 

(3.15) 

where m is the renormalised mass of the theory, and c characterises the continuum 
contribution. Equation (3.13) can then be re-expressed as 

m 2 = m i  +6(0)/iG*(O)-S (3.16) 

where S is the continuum contribution. Since iG2(0) can, in turn, be formally expressed 
as 

(3.17) 

of mass renormalisation. Suppose 

p ( a )  = ~ ( a  - m 2 )  + c ( u )  

iGz(0) = iGo(O; m 2 )  +iG2(continuum) 
with 

2 SkE iGo(O;m ) = -  ~ 1 k 2 + m 2  (3.18) 

equation (3.16) is, in part, a self-consistent expression of the mass renormalisation 
that is required. 

The second property of (3.13) is that, since the second term is infinitely negative, 
our expectation is that mi is infinitely negative. We do not consider this a problem. 
For example, let us consider the strong coupling expansion based on the IVM as 
developed in Kovesi-Domokos (1976). Even if we are uneasy about the possible over 
regularisation used by Kovesi-Domokos, a formal mass renormalisation of the type 

m 2  =&S(O)m: + (3.19) 
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(mo is the unrenormalised mass) is at least part of the picture. Equation (3.19), with 
some similarities to (3.16), also requires that mi  be infinitely negative. 

To allay any remaining doubts about the validity of (3.10) and its consequences, 
we shall now argue that the diagrammatic expansion of § 2 is no more than a description 
of (3.16) and hence of (3.10). 

4. The diagrams reconsidered 

We wish to reconcile the qualitative expansion (2.20) to the self-consistent mass 
renormalisation of (3.16). The firsr thing we note is that the series (2.20) represents 
only the most singular part of the self-mass, with no continuum contributions. This 
corresponds to taking 

p(c. )= &(a - m2) (4.1) 

m2 = mg +S(0)/iGo(O; m2). 

in (3.15), whence equation (3.16) becomes the self-consistent relation 

(4.2) 
Since Go(0) in equation (2.20) is shorthand for Go(O; mg) we need to express 

Go(O; m2) in terms of Go(O; mi). If 

(4.3) 

(4.4) 

2 2 2  Sm = m  -mo 

we have 

GO(0; m2) = Go(0; mg) +iSm2L2+ ( i~3m~)~L3  + . . . +. . . (iSm2)p-1Lp + . . . 
with L, as given in (2.19). 

If we now use the fact that SmZ is itself given by (4.2) as 

Sm2 = S(0)/iGo(O; m2) (4.5) 
we see that Go(O; mZ) can be expanded in continued fractions as 

where as before Go(0) = Go(O; mt). 

Sm = m  -mo 

Expanding Go(O; m2)-' about GG' (0) then gives 
2 2 2  

2 
=- S(0) +-(-) Lz S(0) 

iGo(0) iGo(0) iGo(0) 

As required, the singularities arising in (4.7) are just those arising in (2.20). 
We now understand the diagrammatic expansion of G2 in § 2 as serving two related 

purposes. On the one hand, it expresses the nature of the mass renormalisation. On 
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the other, by plausibly reproducing (4.2) and presumably (if the non-leading sin- 
gularities could be handled) satisfying (3.16) it guarantees that equation (3.10) is 
satisfied. Since the diagrams of table 1 correspond to an effective non-normal ordered 
theory, and equation (3.10) to a non-subtracted theory we have identified the subtrac- 
tion procedure with a normal ordering. 

We have a little insight into a further puzzle, that of the homogeneity of the 
scale-covariant branching equations (3.7) (with or without subtractions). On taking 
the operator-product expansion implied by these into account we get formally linear 
homogeneous equations for the connected Green functions W,. The W, obtained from 
these equations thus have an undetermined scale b (Klauder 1978, 1979). One hope 
expressed for the augmented formalism was that, by virtue of the inhomogeneous 
terms in the branching equations (3.4) and the expected nonlinearity of the connected 
Green function equations, this scale could be determined. The case of G2(x) presented 
above shows that the diagrams for G2(x),  rather than determining it in terms of the 
free-field propagator Go(x),  merely conspire to guarantee that the homogeneous 
equation (3.10) is satisfied. 

As a final consistency check, let us see what happens if we replace K,  = i7, + m i  
by rnt in the previous analysis. On the one hand, dropping the kinetic term suggests 
that we should retrieve the IVM. On the other, we know that the IVM crucially requires 
the subtraction procedure that we have now rejected. These opposing expectations 
are reconciled in the following way. Firstly, the only singularity that arises is SiO), 
with no analogue of ‘continuum’ contributions. Equation (4.2) now becomes 

!4.8) 

with solution m i  = 0:. Thus equation (3.10) is still satisfied, albeit trivially. More to 
the point, massless pseudo-free IVM does not exist, resolving the contradiction. 

2 2 2  m = m o + m  

5. Towards a solution of the augmented equations 

We shall further confirm the validity of the constraint equation (3.10) by presenting 
a solution preserving the leading-order singularities of branching equations (3.1) and 
(3.2) (or equivalently (3.4) and (3.6)). 

We first consider the constraint equation (3.2) and its corresponding branching 
equations (3.4). We shall look for the simplest solutions to the most singular parts 
of these equations and check their consistency with the dynamical equations afterwards. 

We note immediately (equation ( 3 . 4 ~ ) )  that the singularity arising from making 
two ,y fields coincident is a 6 function. This is compatible with ,y being a purely 
auxiliary field, even after renormalisation, for which we would expect 

G 0 , 2 ( - ~  Y ) X ~ ( X  - Y ) .  (5.1) 

Taking this to be the case (3.4b) becomes consistent if, as far as leading singularities 

G2,zbx; X Y )  Gz,o(xx)Go,z(xy). (5 .2 )  

are concerned, 

t Since each contribution in table 1 to the single-mass insertion is proportional to m2, an alternative solution 
would be to interpret (4.8) as m 2  = m; + m: +. . . + m: +. . . , that is m 2  infinite whereby the theory again 
ceases to exist. 
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A simple way to make equations (3 .46)  identical to (3 .4a)  is to further assume 
that (compatible with (5 .2))  

G ~ + ~ . z ( x x x I  . * x p ;  X Y )  5 Gp+z,o(xxx1. ~ ~ ) G o . z ( x Y  1 (5 .3)  

Gp+2,o(xxxl - - x p )  Gz,o(xx)Gp,o(xl - . x p )  (5 .4)  

and 

are satisfied (again at the level of leading singularities). This is displayed in figure 3.  

Figure 3. The approximate factorisation equations (5.1) to (5.4). Circles denote uncon- 
nected Green functions. 

Klauder’s augmented equations for Gp,o (the quantities of interest) only directly 
involve G , ,  €or q 3 2 ,  It is plausible that assumptions (5.1)-(5.4) alone, when used 
in equations (3.6),  provide a basis for constructing solutions for Gp,o. We stress that 
these assumptions, compatible with equations (3.4),  are not tailored to satisfy the 
crucial equation (3.10),  which requires ( 3 . 6 ~ )  in addition. 

However, we observe that all these assumptions (and more) are a consequence of 
the single assumption of separability 

Zb [h,  11 = H [ h l J [ j l  (5 .5 )  

where the equality is to be interpreted as applying only to the most singular contribu- 
tions. 

Inserting (5 .9 ,  motivated by the constraint equations (3.4),  into the constraint 
equation (3.2) gives 

(5.6) 

with solution 

-- - Gz,O(XX)H E Gz(0)H SZH 
i26h (x)’ 

(5.7) 
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and 

Since 7 is an arbitrary scale factor, we choose it to satisfy? 

qGZ(O)= 1. (5 .9)  

Equation (5 .8 )  now shows that as far as leading singularities alone are concerned J 
describes a ‘free-field’ theory with two-point function 

A 2 ( ~ - y ) = G o , 2 ( x  -y)--iS(x-y).  (5.10) 

In its own way, equation (5.7), giving (5.4) directly, states that H also describes a 
‘free theory’ (to leading singularities). 

To check the consistency of this we insert (5.5) into the dynamical equation (3.1) 
to obtain 

Rewriting this as 

(5.11) 

(5.12) 

we assume that the superficial inconsistency of a j-dependent right-hand side is 
interpreted by making the infinite G2(0) take the right-hand side to zero. We thus 
end up with the equation 

(5.13) 

showing a field with self-consistent additive mass renormalisation of mi to 

m 2  = m: +s(0)/iG2(O). (5.14) 

At the level of leading singularities this is just the result (4.2) of the previous section. 
We accept that it is easy to be deceived by heuristic equations of the type shown 

above. To justify the step from (5.12) to (5.13) we really need to study the branching 
equations (3.4) and (3.6) in more detail, In the appendix we show how consistency 
is achieved. 

So far everything hangs together at the level of leading singularities, at which level 
the connected (truncated) Green functions play no role, because of the approximate 
‘free-field’ solution. On examining the contributions to W, of table 2 we are unable 
to see how the contributions may sum. Nevertheless, we have no reason to believe 
that they sum to a vanishing contribution except insofar as s(0)/G,(0)2 vanishes. 

We shall return to this in a later paper. 

6. The large-N limit of the O ( N )  pseudo-free theory 

In our discussion so far, the equation (4.2) has a pivotal position. It serves the three 
roles of describing the nature of mass renormalisation, implying the existence of the 
i. In 5 2 we chose vGo(0) = 1. 
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branching equation (3. lo), and reflecting the consistent separability of the most singular 
contributions within the general branching equations. 

However, it is an approximate equation, obtained by retaining only the most 
singular contributions (the point-mass insertions) induced by the hard-core effect of 
the scale-invariant measure. We shall now show that this equation (4.2) becomes 
exact in the large-N limit of the O(N)-invariant scale-covariant pseudo-free scalar 
theory. This serves to reinforce further our belief in the results presented so far. 

Consider this O(N)-invariant scalar theory, with Nscalar fields pi (i = 1,2, . . . , N )  
and generating functional 

where the O(N)-invariant measure 9f[q] is also invariant under scale transformations, 
i.e. 

9 ' [Aq]  = 9'[q]. (6.2) 

To preserve (6.2) we generalise the auxiliary formalism (1.1) to 

where the O(N)-invariant measures 9[q], 9[x] are now translation invariant. We 
assume that the functional integral is dominated by regions for which qz, x2 are of 
order N, whence the explicit N dependence of the cross term x2qz (q is O(1)). In 
order to make the N dependence even more explicit we rewrite Zb [h] as 

Zb[h]= / 9[<o]~aLy]ka[c~][SCy~-Nc~)]expi d ~ [ ~ ( ~ , q ) ~ - ~ ( m ~ + q c ~ ) q ~ + A ~ q ]  

(6.4) 
= 9[q]9kl9[ul9[al exp i I dx[b@,q)' 

-+(mi + qcT)q2 ++a (x2 -Nv) + h -401 (6.5) 

where u, a are O(1). 
Performing the q and x integrations gives 

9 [ ( ~ ] 9 [ a ]  exp iNA[cr, a; h] (6.6) 

where 

h ( U + m z + q c ~ ) - ' - h .  (6.7) 

Assuming that h2  is O(N) ,  all terms in A are O(1). 

of A[u, a ;  h], occurring at uO[h], ao[h]. To leading order in N this gives 
This permits us to determine Zb in the large-N limit by looking for the extremum 

(6.8) i Wb [h] = In Zb [hl = iNA[uo, (YO; hl .  
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A more convenient quantitiy than W is the effective action r, the generating 
functional for the one cp irreducible Green functions. Defining the semiclassical fields 
cp by 

 pi = S W/Shi (6.9) 

we have 

where W, h are expressed in terms of cp via (6.9). 
From (6.7) we see that cp is defined by 

(6.10) 

(0 + mi + 7/ao)cp = h. (6.11) 

This suggests that we introduce the generalised effective action 

r[cp, a, U ]  = - - q (0 + mi + vu)cp - ua + $iN Tr In a (0 + mi + TU) .  (6.12) 2 ' I  
The effective action r[q] of (6.10) is obtained from r[cp, a, U ]  as 

r[vl= Ucp, (yo, g o 1  (6.13) 

where ao[cp], crO[cp] satisfy 

(6.14) 

and 

These equations are no more than 

6AISu = 0 =SA/& (6.16) 

for A of (6.7), on making the substitution (6.11). 
We thus need only work with (6.12), in which a, u are auxiliary fields. The one 

cp irreducible Green functions are obtained as the functional derivatives of I'[cp, u, a], 
evaluated at the constant-field solutions to (6.14) and (6.15), together with the 
constant-field solution to 

sr 2 O=-=-(nfmo+?-/Uo)cpi 
SQi 

i.e. at cp = 0. 
Although the cp fields mix with the u field in general with 

at cp = 0 they decouple. Thus the two-point function G! is obtained directly as 

.. s2w s2r 

(6.17) 

(6.18) 

(6.19) 
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This has the large-N behaviour 

G!(x) = S"G2(x) (6.20) 

where 

(U+ mi  + ~ U O ) G ~ ( X )  = -iS(x). (6.21) 

The first property of (6.21) that we notice is that the two-point function G2 is that 
of a 'free' theory, insofar that it has no multi-particle continuum, with mass m satisfying 

(6.22) 

As we had noted earlier, when motivating the lack of normal ordering in the augmented 
theory, large-N limits get their essential physics from the most singular contributions. 
However, the 'free' behaviour of G2 in the large-N limit conventionally arises, not 
because the theory is truly free, but because it becomes a semiclassical tree theory. 
In this case the large-N limit of the pseudo-free theory can behave as a free theory. 
A fuller analysis will be given in a later publication. 

It is sufficient for the moment to re-express the constant field solutions to (6.14),  
(6.15),  (6.17) as mass renormalisation for m of (6.22).  It follows that 

2 2  m =mo+Vuo. 

= S(0)/iGo(O, m2). (6.23) 

This is just equation (4.2),  although now exactly satisfied to leading order in N-' .  
That is, the N-' expansion provides a natural way to separate out the most singular 

part of the hard-core interactions (or equivalently, the most singular part of the 
branching equations) due to the scale-invariant measure. We shall not pursue this 
any further here. 

So far we have been so preoccupied with establishing the validity of the formal 
equation (4.2) (or (6.23)) that we have made no attempt to interpret it. Suppose the 
pseudo-free theory is in d space-time dimensions. Treated as the A + O  limit of a 
A ( q2)" theory, the failure of the canonical theory forces us to adopt the scale-covariant 
theory for d > 4n/(2n - 2), but a priori it is defined for all d.  

As an intermediate step, we regularise S(0) and Go(O, m2) by imposing the momen- 
tum cut-off Ikl <A. This gives 

S ( o ) A  - A2 
Go(O; m2)*-1n (A2/m2) 

d = 2  

(ad, bd finite) d > 5 .  
(6.24) 

We see that for d > 4 (4.2) has the form ( a d ,  bd finite) 

m2 = (mi + adA2)(1 - (6.25) 

and the quadratic ultraviolet divergence can be absorbed in m: to give a finite result 
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on taking A + 00. For d < 4 the presence of logarithmic or linear divergences makes 
it impossible to express (4.2) in a finite way, and we must assume that the large-N 
limit of the pseudo-free theory does not exist. 

For d = 4 we still have an expression of the form (6.25) with b4 logarithmically 
divergent, We thus need both multiplicative and additive renormalisation of mi to 
get a finite result. 

This first dimension-specific result is very encouraging since it permits the scale- 
covariant theory for values of d for which the canonical theory breaks down. However, 
we expect these results to be modified on including self-interactions. We shall not 
consider this further here. 

7. Conclusions 

We summarise our results as follows. 
Firstly, our diagrammatic approach has shown that the scale-invariant measure 

has the effect of a non-polynomial effective ‘hard-core’ interaction. 
More subtly, we find that to eschew normal ordering in this effective interaction 

is equivalent to not performing subtractions in the scale-covariant equations. That is, 
the diagrams serve as a pictorial representation of the constraint 

lim KxG2(x - y )  = 0. (7.1) 
Y + X  

To see this it was necessary to identify the partial mass renormalisation 

m 2  = mg +S(O)/iG(O, m 2 )  (7.2) 
implied by the most singular part of (6.1) with the mass renormalisation of the 
diagrammatic expansion. From this point of view the diagrammatic expansion, by the 
resummation implicit in (7.2), allows the scale of G2 to remain undetermined, contrary 
to expectation for a translation-covariant formulation. 

Furthermore, we have seen that, assuming factorisation of leading singularities, it 
is possible to find a consistent solution to the branching equations for the unconnected 
Green functions that consistently implies (7.1). 

What this means is that the branching equations for the scale-covariant theory 
and the equivalent translation-covariant augmented theory do not obviously mismatch 
at the coincident point limit of the latter, as might have been expected?. 

Finally, we have seen that this separation of most singular parts arises naturally 
in the large-N limit of the O(N)-invariant pseudo-free theory. For large N, the 
self-consistent mass renormalisation (7.2) becomes exact. Having thus justified (7.2), 
we note that it can be re-expressed in terms of finite quantities only for d 24 space-time 
dimensions. It is just for these values that a scale-covariant theory is necessary. 

All our results are valid only for the pseudo-free theory. As yet we have very 
little understanding of the effect of including a A q 4  term in the action, to give a 
generating functional 

(7.3) 

t Since the incompatible operator product expansion and operator-product normal ordering seem, respec- 
tively, to be appropriate to the two formalisms (Klauder 1977). 
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At the very least, we would expect the diagrammatic expansion to correspond to the 
formal (unsubtracted) equation 

lim KxG2(x  - y ) + 4AoG4(xxxx) = 0. (7.4) 
X - r Y  

Of course, we expect equation (7.7) (or (7.1)) to be valid only for the case of a 
scale-invariant measure. However, the lesson that we have learned from the arguments 
above is that one way to proceed is to organise ultraviolet divergences along the lines 
of the 1/N expansion. There is no difficulty, in such an expansion, to work with more 
general scale-covariant (rather than scale-invariant) measures. This will be discussed 
in some detail in paper V (Ebbutt and Rivers 1982~).  

Appendix. The branching equations 

We have already seen that the constraint equations (3.4) are compatible with (indeed 
motivated) ansatz (5.5). We need to show that equations (3.6) are also satisfied by 
( 5 3 ,  subject to (5.14). 

It is convenient to replace ( 3 . 6 ~ )  and (3.66) by the linear combinations (obtained 
from (3.9)) 

K&o(x -Y)+v[G~,~(xY;  xx)-G2,2(xx; xy) l=O (Al) 

i c  S(~-xr )Gp,o(yxi . .  . f,. . . X ~ ) + K ~ G ~ + ~ , O ( X Y X I . .  . x,) 
r 

+~[Gp+2,2(xyxl.  S .  x ~ ; x x ) - G ~ + ~ , ~ ( x x x I  s . .  xp;xy) l=o .  (A2) 

Equation (A2) is the point-split version of the subtracted scale-covariant equations 
that follow from (3.7) and (Al) the point-split version of the crucial constraint equation 
(3.10). We retain equations (3 .6~)  for Gp,q, q >O. 

We look at those equations in turn, beginning with (Al). With the assumptions 
(5.1)-(5.4) the equation (Al) becomes 

or 

as required. That is, the separability assumption (5.5), for leading singularities, 
automatically satisfies (3.10). 

We move on to the equations (A2). The first of these is 
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which is satisfied automatically by (A4). It takes little effort to see that the remaining 
equations (A2) are also satisfied. 

The first serious test of the justifiable neglect of the right-hand side of (5.12) comes 
with equations (3.6c), involving more derivatives with respect to j .  The first of these 
is 

iS(x-xl)GO,*(yl . . . Y ~ ) + K ~ G ~ , ~ ( X X I ; Y ~  . .  . Y ~ ) + ~ ~ G ~ , , + ~ ( X X I ; X X Y ~ .  . . y , ) = o .  (A8) 

With the notation A, = GO,* equation (A8) becomes, on imposing separability, 

iS(x -xdA,(y l . .  . yq)+KG2(xx~)A, (y~ .  . . yq)+77G2(xx~)A,+2(xxy~. . . yq)=0.  (A9) 

Since 

Aq+z(xxyl. y q ) = - i a ( O ) A q ( Y l .  * ~ q )  (A 10) 

to leading singularities, (A9) becomes 

- ) G 2 ( x x l ) + i S ( x - x l ) ] A q ( y ~  (0) . . . y  ,)= 0 [ ( Kx + iG2( 0) 

which is again satisfied. With a little work we see that the remaining equations ( 3 . 6 ~ )  
are satisfied, and hence all independent equations are satisfied (to leading 
singularities). 
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